2020-08-21 10:40:42 +10:00

137 lines
3.3 KiB
Markdown

# Cluster Autoscaling
Scales the number of nodes in our cluster based off usage metrics
[Documentation](https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler)
## Understanding Resources
In this example, I'll be focusing on CPU for scaling. <br/>
We need to ensure we have an understanding of the compute resources we have. <br/>
1) How many cores do we have <br/>
2) How many cores do our application use <br/>
I go into more details about pod resource utilisation in the Horizontal Pod Autoscaler guide.
# We need a Kubernetes cluster with Cluster Autoscaler
```
# azure example
NAME=aks-getting-started
RESOURCEGROUP=aks-getting-started
SERVICE_PRINCIPAL=
SERVICE_PRINCIPAL_SECRET=
az aks create -n $NAME \
--resource-group $RESOURCEGROUP \
--location australiaeast \
--kubernetes-version 1.16.10 \
--nodepool-name default \
--node-count 1 \
--node-vm-size Standard_F4s_v2 \
--node-osdisk-size 250 \
--service-principal $SERVICE_PRINCIPAL \
--client-secret $SERVICE_PRINCIPAL_SECRET \
--output none \
--enable-cluster-autoscaler \
--min-count 1 \
--max-count 5
```
# Deploy Metric Server
[Metric Server](https://github.com/kubernetes-sigs/metrics-server) provides container resource metrics for use in autoscaling pipelines
We will need to deploy Metric Server [0.3.7](https://github.com/kubernetes-sigs/metrics-server/releases/tag/v0.3.7) <br/>
I used `components.yaml`from the release page link above. <br/>
Note: For Demo clusters (like `kind`), you will need to disable TLS <br/>
You can disable TLS by adding the following to the metrics-server container args
```
- --kubelet-insecure-tls
- --kubelet-preferred-address-types="InternalIP"
```
Deploy it:
```
cd kubernetes\autoscaling
kubectl -n kube-system apply -f .\metric-server\metricserver-0.3.7.yaml
#test
kubectl -n kube-system get pods
#wait for metrics to populate
kubectl top nodes
```
## Example App
We have an app that simulates CPU usage
```
# build
cd kubernetes\autoscaling\application-cpu
docker build . -t aimvector/application-cpu:v1.0.0
# push
docker push aimvector/application-cpu:v1.0.0
# resource requirements
resources:
requests:
memory: "50Mi"
cpu: "500m"
limits:
memory: "500Mi"
cpu: "2000m"
# deploy
kubectl apply -f deployment.yaml
# metrics
kubectl top pods
```
## Generate some CPU load
```
# Deploy a tester to run traffic from
cd kubernetes/autoscaling
kubectl apply -f ./autoscaler-cluster/tester.yaml
# get a terminal
kubectl exec -it tester sh
# install wrk
apk add --no-cache wrk curl
# simulate some load
wrk -c 5 -t 5 -d 99999 -H "Connection: Close" http://application-cpu
# scale and keep checking `kubectl top`
# every time we add a pod, CPU load per pod should drop dramatically.
# roughly 8 pods will have each pod use +- 400m
kubectl scale deploy/application-cpu --replicas 2
```
## Deploy an autoscaler
```
# scale the deployment back down to 2
kubectl scale deploy/application-cpu --replicas 2
# deploy the autoscaler
kubectl autoscale deploy/application-cpu --cpu-percent=95 --min=1 --max=10
# pods should scale to roughly 7-8 to match criteria
kubectl describe hpa/application-cpu
kubectl get hpa/application-cpu -owide
```