# Cluster Autoscaling Scales the number of nodes in our cluster based off usage metrics [Documentation](https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler) ## Understanding Resources In this example, I'll be focusing on CPU for scaling.
We need to ensure we have an understanding of the compute resources we have.
1) How many cores do we have
2) How many cores do our application use
I go into more details about pod resource utilisation in the Horizontal Pod Autoscaler guide. # We need a Kubernetes cluster with Cluster Autoscaler ``` # azure example NAME=aks-getting-started RESOURCEGROUP=aks-getting-started SERVICE_PRINCIPAL= SERVICE_PRINCIPAL_SECRET= az aks create -n $NAME \ --resource-group $RESOURCEGROUP \ --location australiaeast \ --kubernetes-version 1.16.10 \ --nodepool-name default \ --node-count 1 \ --node-vm-size Standard_F4s_v2 \ --node-osdisk-size 250 \ --service-principal $SERVICE_PRINCIPAL \ --client-secret $SERVICE_PRINCIPAL_SECRET \ --output none \ --enable-cluster-autoscaler \ --min-count 1 \ --max-count 5 ``` # Deploy Metric Server [Metric Server](https://github.com/kubernetes-sigs/metrics-server) provides container resource metrics for use in autoscaling pipelines We will need to deploy Metric Server [0.3.7](https://github.com/kubernetes-sigs/metrics-server/releases/tag/v0.3.7)
I used `components.yaml`from the release page link above.
Note: For Demo clusters (like `kind`), you will need to disable TLS
You can disable TLS by adding the following to the metrics-server container args ``` - --kubelet-insecure-tls - --kubelet-preferred-address-types="InternalIP" ``` Deploy it: ``` cd kubernetes\autoscaling kubectl -n kube-system apply -f .\metric-server\metricserver-0.3.7.yaml #test kubectl -n kube-system get pods #wait for metrics to populate kubectl top nodes ``` ## Example App We have an app that simulates CPU usage ``` # build cd kubernetes\autoscaling\application-cpu docker build . -t aimvector/application-cpu:v1.0.0 # push docker push aimvector/application-cpu:v1.0.0 # resource requirements resources: requests: memory: "50Mi" cpu: "500m" limits: memory: "500Mi" cpu: "2000m" # deploy kubectl apply -f deployment.yaml # metrics kubectl top pods ``` ## Generate some CPU load ``` # Deploy a tester to run traffic from cd kubernetes/autoscaling kubectl apply -f ./autoscaler-cluster/tester.yaml # get a terminal kubectl exec -it tester sh # install wrk apk add --no-cache wrk curl # simulate some load wrk -c 5 -t 5 -d 99999 -H "Connection: Close" http://application-cpu # scale and keep checking `kubectl top` # every time we add a pod, CPU load per pod should drop dramatically. # roughly 8 pods will have each pod use +- 400m kubectl scale deploy/application-cpu --replicas 2 ``` ## Deploy an autoscaler ``` # scale the deployment back down to 2 kubectl scale deploy/application-cpu --replicas 2 # deploy the autoscaler kubectl autoscale deploy/application-cpu --cpu-percent=95 --min=1 --max=10 # pods should scale to roughly 7-8 to match criteria kubectl describe hpa/application-cpu kubectl get hpa/application-cpu -owide ```