# Kubernetes Autoscaling Guide ## Cluster Autoscaling Cluster autoscaler allows us to scale cluster nodes when they become full
## Horizontal Pod Autoscaling HPA allows us to scale pods when their resource utilisation goes over a threshold
## Requirements ### A Cluster * For both autoscaling guides, we'll need a cluster.
* For `Cluster Autoscaler` You need a cloud based cluster that supports the cluster autoscaler
* For `HPA` We'll use [kind](http://kind.sigs.k8s.io/) ### Cluster Autoscaling - Creating an AKS Cluster ``` # azure example NAME=aks-getting-started RESOURCEGROUP=aks-getting-started SERVICE_PRINCIPAL= SERVICE_PRINCIPAL_SECRET= az aks create -n $NAME \ --resource-group $RESOURCEGROUP \ --location australiaeast \ --kubernetes-version 1.16.10 \ --nodepool-name default \ --node-count 1 \ --node-vm-size Standard_F4s_v2 \ --node-osdisk-size 250 \ --service-principal $SERVICE_PRINCIPAL \ --client-secret $SERVICE_PRINCIPAL_SECRET \ --output none \ --enable-cluster-autoscaler \ --min-count 1 \ --max-count 5 ``` ### Horizontal Pod Autocaling - Creating a Kind Cluster My Node has 6 CPU cores for this demo
``` kind create cluster --name hpa --image kindest/node:v1.18.4 ``` ### Metric Server * For `Cluster Autoscaler` - On cloud-based clusters, Metric server may already be installed.
* For `HPA` - We're using kind [Metric Server](https://github.com/kubernetes-sigs/metrics-server) provides container resource metrics for use in autoscaling pipelines
Because I run K8s `1.18` in `kind`, the Metric Server version i need is `0.3.7`
We will need to deploy Metric Server [0.3.7](https://github.com/kubernetes-sigs/metrics-server/releases/tag/v0.3.7)
I used `components.yaml`from the release page link above.
Important Note : For Demo clusters (like `kind`), you will need to disable TLS
You can disable TLS by adding the following to the metrics-server container args
For production, make sure you remove the following :
``` - --kubelet-insecure-tls - --kubelet-preferred-address-types="InternalIP" ``` Deployment:
``` cd kubernetes\autoscaling kubectl -n kube-system apply -f .\metric-server\metricserver-0.3.7.yaml #test kubectl -n kube-system get pods #wait for metrics to populate kubectl top nodes ``` ## Example Application For all autoscaling guides, we'll need a simple app, that generates some CPU load
* Build the app * Push it to a registry * Ensure resource requirements are set * Deploy it to Kubernetes * Ensure metrics are visible for the app ``` # build cd kubernetes\autoscaling\application-cpu docker build . -t aimvector/application-cpu:v1.0.0 # push docker push aimvector/application-cpu:v1.0.0 # resource requirements resources: requests: memory: "50Mi" cpu: "500m" limits: memory: "500Mi" cpu: "2000m" # deploy kubectl apply -f deployment.yaml # metrics kubectl top pods ``` ## Generate some traffic ``` # get a terminal to the traffic-generator kubectl exec -it traffic-generator sh # install wrk apk add --no-cache wrk curl # simulate some load wrk -c 5 -t 5 -d 99999 -H "Connection: Close" http://application-cpu kubectl scale deploy/application-cpu --replicas 2 ```