mirror of
https://github.com/fhem/fhem-mirror.git
synced 2025-03-04 11:26:55 +00:00
355 lines
8.4 KiB
Perl
Executable File
355 lines
8.4 KiB
Perl
Executable File
##############################################
|
|
# $Id$
|
|
# This code is derived from DateTime::Event::Sunrise, version 0.0501.
|
|
# Simplified and removed further package # dependency (DateTime,
|
|
# Params::Validate, etc). For comments see the original code.
|
|
#
|
|
|
|
package main;
|
|
use strict;
|
|
use warnings;
|
|
use Math::Trig;
|
|
|
|
sub sr($$$$$$);
|
|
sub sunrise_rel(@);
|
|
sub sunset_rel(@);
|
|
sub sunrise_abs(@);
|
|
sub sunset_abs(@);
|
|
sub isday();
|
|
sub sunrise_coord($$$);
|
|
|
|
sub SUNRISE_Initialize($);
|
|
|
|
# See perldoc DateTime::Event::Sunrise for details
|
|
my $long;
|
|
my $lat;
|
|
my $tz = ""; # will be overwritten
|
|
my $altit = "-6"; # Civil twilight
|
|
my $RADEG = ( 180 / 3.1415926 );
|
|
my $DEGRAD = ( 3.1415926 / 180 );
|
|
my $INV360 = ( 1.0 / 360.0 );
|
|
|
|
|
|
sub
|
|
SUNRISE_EL_Initialize($)
|
|
{
|
|
my ($hash) = @_;
|
|
}
|
|
|
|
|
|
##########################
|
|
# Compute the _next_ event
|
|
# rise: 1: event is sunrise (else sunset)
|
|
# isrel: 1: relative times
|
|
# seconds: second offset to event
|
|
# daycheck: if set, then return 1 if the sun is visible, 0 else
|
|
sub
|
|
sr($$$$$$)
|
|
{
|
|
my ($rise, $seconds, $isrel, $daycheck, $min, $max) = @_;
|
|
my $needrise = ($rise || $daycheck) ? 1 : 0;
|
|
my $needset = (!$rise || $daycheck) ? 1 : 0;
|
|
$seconds = 0 if(!$seconds);
|
|
|
|
############################
|
|
# If set in global, use longitude/latitude
|
|
# from global, otherwise set Frankfurt/Germany as
|
|
# default
|
|
$long = AttrVal("global", "longitude", "8.686");
|
|
$lat = AttrVal("global", "latitude", "50.112");
|
|
Log 5, "Compute sunrise/sunset for latitude $lat , longitude $long";
|
|
|
|
|
|
my $nt = time;
|
|
my @lt = localtime($nt);
|
|
my $gmtoff = _calctz($nt,@lt); # in hour
|
|
|
|
my ($rt,$st) = _sr($needrise,$needset, $lt[5]+1900,$lt[4]+1,$lt[3], $gmtoff);
|
|
my $sst = ($rise ? $rt : $st) + ($seconds/3600);
|
|
|
|
my $nh = $lt[2] + $lt[1]/60 + $lt[0]/3600; # Current hour since midnight
|
|
if($daycheck) {
|
|
return 0 if($nh < $rt || $nh > $st);
|
|
return 1;
|
|
}
|
|
|
|
my $diff = 0;
|
|
if($data{AT_RECOMPUTE} || # compute it for tommorow
|
|
int(($nh-$sst)*3600) >= 0) { # if called a subsec earlier
|
|
$nt += 86400;
|
|
@lt = localtime($nt);
|
|
my $ngmtoff = _calctz($nt,@lt); # in hour
|
|
$diff = 24+$gmtoff-$ngmtoff;
|
|
|
|
($rt,$st) = _sr($needrise,$needset, $lt[5]+1900,$lt[4]+1,$lt[3], $ngmtoff);
|
|
$sst = ($rise ? $rt : $st) + ($seconds/3600);
|
|
}
|
|
|
|
$sst = hms2h($min) if(defined($min) && (hms2h($min) > $sst));
|
|
$sst = hms2h($max) if(defined($max) && (hms2h($max) < $sst));
|
|
|
|
$sst += $diff if($isrel);
|
|
$sst -= $nh if($isrel == 1);
|
|
|
|
return h2hms_fmt($sst);
|
|
}
|
|
|
|
|
|
sub
|
|
_sr($$$$$$)
|
|
{
|
|
my ($needrise, $needset, $y, $m, $dy, $offset) = @_;
|
|
|
|
my $d = _days_since_2000_Jan_0($y,$m,$dy) + 0.5 - $long / 360.0;
|
|
my ( $tmp_rise_1, $tmp_set_1 ) =
|
|
_sunrise_sunset( $d, $long, $lat, $altit, 15.04107 );
|
|
|
|
my ($tmp_rise_2, $tmp_rise_3) = (0,0);
|
|
|
|
if($needrise) {
|
|
$tmp_rise_2 = 9; $tmp_rise_3 = 0;
|
|
until ( _equal( $tmp_rise_2, $tmp_rise_3, 8 ) ) {
|
|
|
|
my $d_sunrise_1 = $d + $tmp_rise_1 / 24.0;
|
|
( $tmp_rise_2, undef ) =
|
|
_sunrise_sunset( $d_sunrise_1, $long, $lat, $altit, 15.04107 );
|
|
$tmp_rise_1 = $tmp_rise_3;
|
|
my $d_sunrise_2 = $d + $tmp_rise_2 / 24.0;
|
|
( $tmp_rise_3, undef ) =
|
|
_sunrise_sunset( $d_sunrise_2, $long, $lat, $altit, 15.04107 );
|
|
}
|
|
}
|
|
|
|
my ($tmp_set_2, $tmp_set_3) = (0,0);
|
|
if($needset) {
|
|
$tmp_set_2 = 9; $tmp_set_3 = 0;
|
|
until ( _equal( $tmp_set_2, $tmp_set_3, 8 ) ) {
|
|
|
|
my $d_sunset_1 = $d + $tmp_set_1 / 24.0;
|
|
( undef, $tmp_set_2 ) =
|
|
_sunrise_sunset( $d_sunset_1, $long, $lat, $altit, 15.04107 );
|
|
$tmp_set_1 = $tmp_set_3;
|
|
my $d_sunset_2 = $d + $tmp_set_2 / 24.0;
|
|
( undef, $tmp_set_3 ) =
|
|
_sunrise_sunset( $d_sunset_2, $long, $lat, $altit, 15.04107 );
|
|
|
|
}
|
|
}
|
|
|
|
return $tmp_rise_3+$offset, $tmp_set_3+$offset;
|
|
}
|
|
|
|
|
|
|
|
sub
|
|
_sunrise_sunset($$$$$)
|
|
{
|
|
my ( $d, $lon, $lat, $altit, $h ) = @_;
|
|
|
|
my $sidtime = _revolution( _GMST0($d) + 180.0 + $lon );
|
|
|
|
# Compute Sun's RA + Decl + distance at this moment
|
|
my ( $sRA, $sdec, $sr ) = _sun_RA_dec($d);
|
|
|
|
# Compute time when Sun is at south - in hours UT
|
|
my $tsouth = 12.0 - _rev180( $sidtime - $sRA ) / $h;
|
|
|
|
# Compute the Sun's apparent radius, degrees
|
|
my $sradius = 0.2666 / $sr;
|
|
|
|
# Do correction to upper limb, if necessary
|
|
$altit -= $sradius;
|
|
|
|
# Compute the diurnal arc that the Sun traverses to reach
|
|
# the specified altitude altit:
|
|
my $cost =
|
|
( sind($altit) - sind($lat) * sind($sdec) ) /
|
|
( cosd($lat) * cosd($sdec) );
|
|
|
|
my $t;
|
|
if ( $cost >= 1.0 ) {
|
|
$t = 0.0; # Sun always below altit
|
|
}
|
|
elsif ( $cost <= -1.0 ) {
|
|
$t = 12.0; # Sun always above altit
|
|
}
|
|
else {
|
|
$t = acosd($cost) / 15.0; # The diurnal arc, hours
|
|
}
|
|
|
|
# Store rise and set times - in hours UT
|
|
|
|
my $hour_rise_ut = $tsouth - $t;
|
|
my $hour_set_ut = $tsouth + $t;
|
|
return ( $hour_rise_ut, $hour_set_ut );
|
|
|
|
}
|
|
|
|
sub
|
|
_GMST0($)
|
|
{
|
|
my ($d) = @_;
|
|
|
|
my $sidtim0 =
|
|
_revolution( ( 180.0 + 356.0470 + 282.9404 ) +
|
|
( 0.9856002585 + 4.70935E-5 ) * $d );
|
|
return $sidtim0;
|
|
|
|
}
|
|
|
|
sub
|
|
_sunpos($)
|
|
{
|
|
my ($d) = @_;
|
|
|
|
my $Mean_anomaly_of_sun = _revolution( 356.0470 + 0.9856002585 * $d );
|
|
my $Mean_longitude_of_perihelion = 282.9404 + 4.70935E-5 * $d;
|
|
my $Eccentricity_of_Earth_orbit = 0.016709 - 1.151E-9 * $d;
|
|
|
|
# Compute true longitude and radius vector
|
|
my $Eccentric_anomaly =
|
|
$Mean_anomaly_of_sun + $Eccentricity_of_Earth_orbit * $RADEG *
|
|
sind($Mean_anomaly_of_sun) *
|
|
( 1.0 + $Eccentricity_of_Earth_orbit * cosd($Mean_anomaly_of_sun) );
|
|
|
|
my $x = cosd($Eccentric_anomaly) - $Eccentricity_of_Earth_orbit;
|
|
|
|
my $y =
|
|
sqrt( 1.0 - $Eccentricity_of_Earth_orbit * $Eccentricity_of_Earth_orbit )
|
|
* sind($Eccentric_anomaly);
|
|
|
|
my $Solar_distance = sqrt( $x * $x + $y * $y ); # Solar distance
|
|
my $True_anomaly = atan2d( $y, $x ); # True anomaly
|
|
|
|
my $True_solar_longitude =
|
|
$True_anomaly + $Mean_longitude_of_perihelion; # True solar longitude
|
|
|
|
if ( $True_solar_longitude >= 360.0 ) {
|
|
$True_solar_longitude -= 360.0; # Make it 0..360 degrees
|
|
}
|
|
|
|
return ( $Solar_distance, $True_solar_longitude );
|
|
}
|
|
|
|
|
|
# Sun's Right Ascension (RA), Declination (dec) and distance (r)
|
|
sub
|
|
_sun_RA_dec($)
|
|
{
|
|
my ($d) = @_;
|
|
|
|
my ( $r, $lon ) = _sunpos($d);
|
|
|
|
my $x = $r * cosd($lon);
|
|
my $y = $r * sind($lon);
|
|
|
|
my $obl_ecl = 23.4393 - 3.563E-7 * $d;
|
|
|
|
my $z = $y * sind($obl_ecl);
|
|
$y = $y * cosd($obl_ecl);
|
|
|
|
my $RA = atan2d( $y, $x );
|
|
my $dec = atan2d( $z, sqrt( $x * $x + $y * $y ) );
|
|
|
|
return ( $RA, $dec, $r );
|
|
}
|
|
|
|
sub
|
|
_days_since_2000_Jan_0($$$)
|
|
{
|
|
my ($y, $m, $d) = @_;
|
|
my @mn = (31,28,31,30,31,30,31,31,30,31,30,31);
|
|
|
|
my $ms = 0;
|
|
for(my $i = 0; $i < $m-1; $i++) {
|
|
$ms += $mn[$i];
|
|
}
|
|
my $x = ($y-2000)*365.25 + $ms + $d;
|
|
$x++ if($m > 2 && ($y%4) == 0);
|
|
return int($x);
|
|
}
|
|
|
|
sub sind($) { sin( ( $_[0] ) * $DEGRAD ); }
|
|
sub cosd($) { cos( ( $_[0] ) * $DEGRAD ); }
|
|
sub tand($) { tan( ( $_[0] ) * $DEGRAD ); }
|
|
sub atand($) { ( $RADEG * atan( $_[0] ) ); }
|
|
sub asind($) { ( $RADEG * asin( $_[0] ) ); }
|
|
sub acosd($) { ( $RADEG * acos( $_[0] ) ); }
|
|
sub atan2d($$) { ( $RADEG * atan2( $_[0], $_[1] ) ); }
|
|
|
|
sub
|
|
_revolution($)
|
|
{
|
|
my $x = $_[0];
|
|
return ( $x - 360.0 * int( $x * $INV360 ) );
|
|
}
|
|
|
|
sub
|
|
_rev180($)
|
|
{
|
|
my ($x) = @_;
|
|
return ( $x - 360.0 * int( $x * $INV360 + 0.5 ) );
|
|
}
|
|
|
|
sub
|
|
_equal($$$)
|
|
{
|
|
my ( $A, $B, $dp ) = @_;
|
|
return sprintf( "%.${dp}g", $A ) eq sprintf( "%.${dp}g", $B );
|
|
}
|
|
|
|
sub
|
|
_calctz($@)
|
|
{
|
|
my ($nt,@lt) = @_;
|
|
|
|
my $off = $lt[2]*3600+$lt[1]*60+$lt[0];
|
|
$off = 12*3600-$off;
|
|
$nt += $off; # This is noon, localtime
|
|
|
|
my @gt = gmtime($nt);
|
|
|
|
return (12-$gt[2]);
|
|
}
|
|
|
|
|
|
sub
|
|
hms2h($)
|
|
{
|
|
my $in = shift;
|
|
my @a = split(":", $in);
|
|
return 0 if(int(@a) < 2 || $in !~ m/^[\d:]*$/);
|
|
return $a[0]+$a[1]/60 + ($a[2] ? $a[2]/3600 : 0);
|
|
}
|
|
|
|
sub
|
|
h2hms($)
|
|
{
|
|
my ($in) = @_;
|
|
my ($h,$m,$s);
|
|
$h = int($in);
|
|
$m = int(60*($in-$h));
|
|
$s = int(3600*($in-$h)-60*$m);
|
|
return ($h, $m, $s);
|
|
}
|
|
|
|
sub
|
|
h2hms_fmt($)
|
|
{
|
|
my ($in) = @_;
|
|
my ($h,$m,$s) = h2hms($in);
|
|
return sprintf("%02d:%02d:%02d", $h, $m, $s);
|
|
}
|
|
|
|
|
|
sub sunrise_rel(@) { return sr(1, shift, 1, 0, shift, shift) }
|
|
sub sunset_rel(@) { return sr(0, shift, 1, 0, shift, shift) }
|
|
sub sunrise_abs(@) { return sr(1, shift, 0, 0, shift, shift) }
|
|
sub sunset_abs(@) { return sr(0, shift, 0, 0, shift, shift) }
|
|
sub sunrise(@) { return sr(1, shift, 2, 0, shift, shift) }
|
|
sub sunset(@) { return sr(0, shift, 2, 0, shift, shift) }
|
|
sub isday() { return sr(1, 0, 0, 1, undef, undef) }
|
|
sub sunrise_coord($$$) { ($long, $lat, $tz) = @_; return undef; }
|
|
|
|
1;
|