mirror of
https://github.com/fhem/fhem-mirror.git
synced 2025-01-31 18:59:33 +00:00
70_PylonLowVoltage: contrib V0.1.7
git-svn-id: https://svn.fhem.de/fhem/trunk@27986 2b470e98-0d58-463d-a4d8-8e2adae1ed80
This commit is contained in:
parent
4c551aa106
commit
6513634e7b
@ -122,6 +122,7 @@ BEGIN {
|
||||
|
||||
# Versions History intern (Versions history by Heiko Maaz)
|
||||
my %vNotesIntern = (
|
||||
"0.1.7" => "20.09.2023 extend possible number of bats from 6 to 8 ",
|
||||
"0.1.6" => "19.09.2023 rework of _callAnalogValue, support of more than 15 cells ",
|
||||
"0.1.5" => "19.09.2023 internal code change ",
|
||||
"0.1.4" => "24.08.2023 Serialize and deserialize data for update entry, usage of BlockingCall in case of long timeout ",
|
||||
@ -157,7 +158,7 @@ my %hrtnc = ( # RTN Codes
|
||||
'99' => { desc => 'invalid data received ... discarded' },
|
||||
);
|
||||
|
||||
my %fns1 = ( # Abrufklasse statische Werte:
|
||||
my %fns1 = ( # Abrufklasse statische Werte:
|
||||
1 => { fn => \&_callSerialNumber }, # serialNumber
|
||||
2 => { fn => \&_callManufacturerInfo }, # manufacturerInfo
|
||||
3 => { fn => \&_callProtocolVersion }, # protocolVersion
|
||||
@ -165,7 +166,7 @@ my %fns1 = ( #
|
||||
5 => { fn => \&_callSystemParameters }, # systemParameters
|
||||
);
|
||||
|
||||
my %fns2 = ( # Abrufklasse dynamische Werte:
|
||||
my %fns2 = ( # Abrufklasse dynamische Werte:
|
||||
1 => { fn => \&_callAlarmInfo }, # alarmInfo
|
||||
2 => { fn => \&_callChargeManagmentInfo }, # chargeManagmentInfo
|
||||
3 => { fn => \&_callAnalogValue }, # analogValue
|
||||
@ -202,6 +203,8 @@ my %hrsnb = ( # Codierung
|
||||
4 => { cmd => "~20054693E00205FD27\x{0d}", mlen => 52 },
|
||||
5 => { cmd => "~20064693E00206FD25\x{0d}", mlen => 52 },
|
||||
6 => { cmd => "~20074693E00207FD23\x{0d}", mlen => 52 },
|
||||
7 => { cmd => "~20084693E00208FD21\x{0d}", mlen => 52 },
|
||||
8 => { cmd => "~20094693E00209FD1F\x{0d}", mlen => 52 },
|
||||
);
|
||||
|
||||
# request command für '1': ~20024651E00202FD33 + CR
|
||||
@ -224,6 +227,8 @@ my %hrmfi = ( # Codierung
|
||||
4 => { cmd => "~20054651E00205FD2D\x{0d}", mlen => 82 },
|
||||
5 => { cmd => "~20064651E00206FD2B\x{0d}", mlen => 82 },
|
||||
6 => { cmd => "~20074651E00207FD29\x{0d}", mlen => 82 },
|
||||
7 => { cmd => "~20084651E00208FD27\x{0d}", mlen => 82 },
|
||||
8 => { cmd => "~20094651E00209FD25\x{0d}", mlen => 82 },
|
||||
);
|
||||
|
||||
# request command für '1': ~20024651E00202FD33 + CR
|
||||
@ -246,6 +251,8 @@ my %hrprt = ( # Codierung
|
||||
4 => { cmd => "~0005464FE00205FD1B\x{0d}", mlen => 18 },
|
||||
5 => { cmd => "~0006464FE00206FD19\x{0d}", mlen => 18 },
|
||||
6 => { cmd => "~0007464FE00207FD17\x{0d}", mlen => 18 },
|
||||
7 => { cmd => "~0008464FE00208FD15\x{0d}", mlen => 18 },
|
||||
8 => { cmd => "~0009464FE00209FD13\x{0d}", mlen => 18 },
|
||||
);
|
||||
|
||||
|
||||
@ -256,6 +263,8 @@ my %hrswv = ( # Codierung
|
||||
4 => { cmd => "~20054696E00205FD24\x{0d}", mlen => 30 },
|
||||
5 => { cmd => "~20064696E00206FD22\x{0d}", mlen => 30 },
|
||||
6 => { cmd => "~20074696E00207FD20\x{0d}", mlen => 30 },
|
||||
7 => { cmd => "~20084696E00208FD1E\x{0d}", mlen => 30 },
|
||||
8 => { cmd => "~20094696E00209FD1C\x{0d}", mlen => 30 },
|
||||
);
|
||||
|
||||
my %hralm = ( # Codierung Abruf alarmInfo
|
||||
@ -265,6 +274,8 @@ my %hralm = ( # Codierung
|
||||
4 => { cmd => "~20054644E00205FD2B\x{0d}", mlen => 82 },
|
||||
5 => { cmd => "~20064644E00206FD29\x{0d}", mlen => 82 },
|
||||
6 => { cmd => "~20074644E00207FD27\x{0d}", mlen => 82 },
|
||||
7 => { cmd => "~20084644E00208FD25\x{0d}", mlen => 82 },
|
||||
8 => { cmd => "~20094644E00209FD23\x{0d}", mlen => 82 },
|
||||
);
|
||||
|
||||
my %hrspm = ( # Codierung Abruf Systemparameter
|
||||
@ -274,24 +285,30 @@ my %hrspm = ( # Codierung
|
||||
4 => { cmd => "~20054647E00205FD28\x{0d}", mlen => 68 },
|
||||
5 => { cmd => "~20064647E00206FD26\x{0d}", mlen => 68 },
|
||||
6 => { cmd => "~20074647E00207FD24\x{0d}", mlen => 68 },
|
||||
7 => { cmd => "~20084647E00208FD22\x{0d}", mlen => 68 },
|
||||
8 => { cmd => "~20094647E00209FD20\x{0d}", mlen => 68 },
|
||||
);
|
||||
|
||||
my %hrcmi = ( # Codierung Abruf chargeManagmentInfo, mlen = Mindestlänge Antwortstring
|
||||
my %hrcmi = ( # Codierung Abruf chargeManagmentInfo
|
||||
1 => { cmd => "~20024692E00202FD2E\x{0d}", mlen => 38 },
|
||||
2 => { cmd => "~20034692E00203FD2C\x{0d}", mlen => 38 },
|
||||
3 => { cmd => "~20044692E00204FD2A\x{0d}", mlen => 38 },
|
||||
4 => { cmd => "~20054692E00205FD28\x{0d}", mlen => 38 },
|
||||
5 => { cmd => "~20064692E00206FD26\x{0d}", mlen => 38 },
|
||||
6 => { cmd => "~20074692E00207FD24\x{0d}", mlen => 38 },
|
||||
7 => { cmd => "~20084692E00208FD22\x{0d}", mlen => 38 },
|
||||
8 => { cmd => "~20094692E00209FD20\x{0d}", mlen => 38 },
|
||||
);
|
||||
|
||||
my %hrcmn = ( # Codierung Abruf analogValue, mlen = Mindestlänge Antwortstring
|
||||
my %hrcmn = ( # Codierung Abruf analogValue
|
||||
1 => { cmd => "~20024642E00202FD33\x{0d}", mlen => 128 },
|
||||
2 => { cmd => "~20034642E00203FD31\x{0d}", mlen => 128 },
|
||||
3 => { cmd => "~20044642E00204FD2F\x{0d}", mlen => 128 },
|
||||
4 => { cmd => "~20054642E00205FD2D\x{0d}", mlen => 128 },
|
||||
5 => { cmd => "~20064642E00206FD2B\x{0d}", mlen => 128 },
|
||||
6 => { cmd => "~20074642E00207FD29\x{0d}", mlen => 128 },
|
||||
7 => { cmd => "~20084642E00208FD27\x{0d}", mlen => 128 },
|
||||
8 => { cmd => "~20094642E00209FD25\x{0d}", mlen => 128 },
|
||||
);
|
||||
|
||||
|
||||
@ -480,7 +497,7 @@ sub manageUpdate {
|
||||
if ($timeout < 1.0) {
|
||||
BlockingKill ($hash->{HELPER}{BKRUNNING}) if(defined $hash->{HELPER}{BKRUNNING});
|
||||
Log3 ($name, 4, qq{$name - Cycle started in main process});
|
||||
startUpdate ( { name => $name, timeout => $timeout, readings => $readings} );
|
||||
startUpdate ({ name => $name, timeout => $timeout, readings => $readings});
|
||||
}
|
||||
else {
|
||||
delete $hash->{HELPER}{BKRUNNING} if(defined $hash->{HELPER}{BKRUNNING} && $hash->{HELPER}{BKRUNNING}{pid} =~ /DEAD/xs);
|
||||
@ -494,7 +511,7 @@ sub manageUpdate {
|
||||
my $blto = sprintf "%.0f", ($timeout + 10);
|
||||
|
||||
$hash->{HELPER}{BKRUNNING} = BlockingCall ( "FHEM::PylonLowVoltage::startUpdate",
|
||||
{ block => 1, name => $name, timeout => $timeout, readings => $readings},
|
||||
{block => 1, name => $name, timeout => $timeout, readings => $readings},
|
||||
"FHEM::PylonLowVoltage::finishUpdate",
|
||||
$blto, # Blocking Timeout höher als INET-Timeout!
|
||||
"FHEM::PylonLowVoltage::abortUpdate",
|
||||
@ -533,26 +550,26 @@ sub startUpdate {
|
||||
ualarm ($timeout * 1000000); # ualarm in Mikrosekunden
|
||||
|
||||
$socket = _openSocket ($hash, $timeout, $readings);
|
||||
|
||||
|
||||
if (!$socket) {
|
||||
$serial = encode_base64 (Serialize ( {name => $name, readings => $readings} ), "");
|
||||
$block ? return ($serial) : return \&finishUpdate ($serial);
|
||||
}
|
||||
|
||||
if (ReadingsAge ($name, "serialNumber", 601) >= 60) { # Abrufklasse statische Werte
|
||||
if (ReadingsAge ($name, "serialNumber", 601) >= 60) { # Abrufklasse statische Werte
|
||||
for my $idx (sort keys %fns1) {
|
||||
if (&{$fns1{$idx}{fn}} ($hash, $socket, $readings)) {
|
||||
if (&{$fns1{$idx}{fn}} ($hash, $socket, $readings)) {
|
||||
$serial = encode_base64 (Serialize ( {name => $name, readings => $readings} ), "");
|
||||
$block ? return ($serial) : return \&finishUpdate ($serial);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for my $idx (sort keys %fns2) { # Abrufklasse dynamische Werte
|
||||
if (&{$fns2{$idx}{fn}} ($hash, $socket, $readings)) {
|
||||
|
||||
for my $idx (sort keys %fns2) { # Abrufklasse dynamische Werte
|
||||
if (&{$fns2{$idx}{fn}} ($hash, $socket, $readings)) {
|
||||
$serial = encode_base64 (Serialize ( {name => $name, readings => $readings} ), "");
|
||||
$block ? return ($serial) : return \&finishUpdate ($serial);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
$success = 1;
|
||||
@ -581,7 +598,7 @@ sub startUpdate {
|
||||
|
||||
ualarm(0);
|
||||
_closeSocket ($hash);
|
||||
|
||||
|
||||
$serial = encode_base64 (Serialize ({name => $name, success => $success, readings => $readings}), "");
|
||||
|
||||
if ($block) {
|
||||
@ -629,9 +646,9 @@ sub abortUpdate {
|
||||
my $name = $hash->{NAME};
|
||||
|
||||
Log3 ($name, 1, "$name -> BlockingCall $hash->{HELPER}{BKRUNNING}{fn} pid:$hash->{HELPER}{BKRUNNING}{pid} aborted: $cause");
|
||||
|
||||
|
||||
delete($hash->{HELPER}{BKRUNNING});
|
||||
|
||||
|
||||
deleteReadingspec ($hash);
|
||||
readingsSingleUpdate ($hash, 'state', 'Update (Child) process timed out', 1);
|
||||
|
||||
@ -770,11 +787,12 @@ sub _callManufacturerInfo {
|
||||
|
||||
__resultLog ($hash, $res);
|
||||
|
||||
my $BatteryHex = substr ($res, 13, 20);
|
||||
$readings->{batteryType} = pack ("H*", $BatteryHex);
|
||||
# $readings->{softwareVersion} = 'V'.hex (substr ($res, 33, 2)).'.'.hex (substr ($res, 35, 2)); # unklar
|
||||
my $ManufacturerHex = substr ($res, 37, 40);
|
||||
$readings->{Manufacturer} = pack ("H*", $ManufacturerHex);
|
||||
my $BatteryHex = substr ($res, 13, 20);
|
||||
# my $softwareVersion = 'V'.hex (substr ($res, 33, 2)).'.'.hex (substr ($res, 35, 2)); # unklare Bedeutung
|
||||
my $ManufacturerHex = substr ($res, 37, 40);
|
||||
|
||||
$readings->{batteryType} = pack ("H*", $BatteryHex);
|
||||
$readings->{Manufacturer} = pack ("H*", $ManufacturerHex);
|
||||
|
||||
return;
|
||||
}
|
||||
@ -1017,59 +1035,59 @@ sub _callAnalogValue {
|
||||
my $bpos = 17; # Startposition
|
||||
my $pcc = hex (substr($res, $bpos, 2)); # Anzahl Zellen (15 od. 16)
|
||||
$bpos += 2; # Pos 19
|
||||
|
||||
|
||||
$readings->{packCellcount} = $pcc;
|
||||
|
||||
|
||||
for my $z (0..$pcc-1) {
|
||||
my $fz = sprintf "%02d", ($z + 1); # formatierter Zähler
|
||||
my $pos = $bpos + ($z * 4); # Startposition
|
||||
my $pos = $bpos + ($z * 4); # Startposition
|
||||
$readings->{'cellVoltage_'.$fz} = sprintf "%.3f", hex(substr($res, $pos, 4)) / 1000; # Pos 19 - 75 bei 15 Zellen
|
||||
}
|
||||
|
||||
$bpos += $pcc * 4; # Pos 79 bei 15 Zellen, Pos 83 bei 16 Zellen
|
||||
|
||||
}
|
||||
|
||||
$bpos += $pcc * 4; # Pos 79 bei 15 Zellen, Pos 83 bei 16 Zellen
|
||||
|
||||
$readings->{numberTempPos} = hex(substr($res, $bpos, 2)); # Anzahl der jetzt folgenden Teperaturpositionen -> 5
|
||||
$bpos += 2;
|
||||
|
||||
$bpos += 2;
|
||||
|
||||
$readings->{bmsTemperature} = (hex (substr($res, $bpos, 4)) - 2731) / 10; # Pos 81 bei 15 Zellen
|
||||
$bpos += 4;
|
||||
|
||||
$bpos += 4;
|
||||
|
||||
$readings->{cellTemperature_0104} = (hex (substr($res, $bpos, 4)) - 2731) / 10; # Pos 85
|
||||
$bpos += 4;
|
||||
|
||||
|
||||
$readings->{cellTemperature_0508} = (hex (substr($res, $bpos, 4)) - 2731) / 10; # Pos 89
|
||||
$bpos += 4;
|
||||
|
||||
|
||||
$readings->{cellTemperature_0912} = (hex (substr($res, $bpos, 4)) - 2731) / 10; # Pos 93
|
||||
$bpos += 4;
|
||||
|
||||
|
||||
$readings->{'cellTemperature_13'.$pcc} = (hex (substr($res, $bpos, 4)) - 2731) / 10; # Pos 97
|
||||
$bpos += 4;
|
||||
|
||||
|
||||
my $current = hex (substr($res, $bpos, 4)); # Pos 101
|
||||
$bpos += 4;
|
||||
|
||||
|
||||
$readings->{packVolt} = sprintf "%.3f", hex (substr($res, $bpos, 4)) / 1000; # Pos 105
|
||||
$bpos += 4;
|
||||
|
||||
my $remcap1 = sprintf "%.3f", hex (substr($res, $bpos, 4)) / 1000; # Pos 109
|
||||
$bpos += 4;
|
||||
|
||||
my $udi = hex substr($res, 113, 2); # Pos 113, user defined item=Entscheidungskriterium -> 2: Batterien <= 65Ah, 4: Batterien > 65Ah
|
||||
|
||||
my $udi = hex substr($res, $bpos, 2); # Pos 113, user defined item=Entscheidungskriterium -> 2: Batterien <= 65Ah, 4: Batterien > 65Ah
|
||||
$bpos += 2;
|
||||
|
||||
my $totcap1 = sprintf "%.3f", hex (substr($res, 115, 4)) / 1000; # Pos 115
|
||||
|
||||
my $totcap1 = sprintf "%.3f", hex (substr($res, $bpos, 4)) / 1000; # Pos 115
|
||||
$bpos += 4;
|
||||
|
||||
$readings->{packCycles} = hex substr($res, 119, 4); # Pos 119
|
||||
|
||||
$readings->{packCycles} = hex substr($res, $bpos, 4); # Pos 119
|
||||
$bpos += 4;
|
||||
|
||||
my $remcap2 = sprintf "%.3f", hex (substr($res, 123, 6)) / 1000; # Pos 123
|
||||
|
||||
my $remcap2 = sprintf "%.3f", hex (substr($res, $bpos, 6)) / 1000; # Pos 123
|
||||
$bpos += 6;
|
||||
|
||||
my $totcap2 = sprintf "%.3f", hex (substr($res, 129, 6)) / 1000; # Pos 129
|
||||
|
||||
my $totcap2 = sprintf "%.3f", hex (substr($res, $bpos, 6)) / 1000; # Pos 129
|
||||
$bpos += 6;
|
||||
|
||||
|
||||
# kalkulierte Werte generieren
|
||||
################################
|
||||
if ($udi == 2) {
|
||||
@ -1090,12 +1108,12 @@ sub _callAnalogValue {
|
||||
);
|
||||
return $err;
|
||||
}
|
||||
|
||||
|
||||
if ($current & 0x8000) {
|
||||
$current = $current - 0x10000;
|
||||
}
|
||||
|
||||
$readings->{packCurrent} = sprintf "%.3f", $current / 10;
|
||||
|
||||
$readings->{packCurrent} = sprintf "%.3f", $current / 10;
|
||||
|
||||
return;
|
||||
}
|
||||
@ -1219,7 +1237,7 @@ sub responseCheck {
|
||||
|
||||
my $rtnerr = $hrtnc{99}{desc};
|
||||
|
||||
if(!$res || $res !~ /^[~A-Fa-f0-9]+\r$/xs || $res =~ tr/~// != 1) {
|
||||
if(!$res || $res !~ /^[~A-Fa-f0-9]+\r$/xs || $res =~ tr/~// != 1) {
|
||||
return $rtnerr;
|
||||
}
|
||||
|
||||
@ -1380,6 +1398,11 @@ This module requires the Perl modules:
|
||||
<li>IO::Socket::Timeout (Installation e.g. via the CPAN shell or the FHEM Installer module) </li>
|
||||
</ul>
|
||||
|
||||
<b>Limitations</b>
|
||||
<br>
|
||||
The module currently supports a maximum of 8 batteries (master + 7 slaves) in one group.
|
||||
<br><br>
|
||||
|
||||
<a id="PylonLowVoltage-define"></a>
|
||||
<b>Definition</b>
|
||||
<ul>
|
||||
@ -1394,10 +1417,10 @@ This module requires the Perl modules:
|
||||
</li>
|
||||
|
||||
<li><b>bataddress:</b><br>
|
||||
Device address of the Pylontech battery. Up to 6 Pylontech batteries can be connected via a Pylontech-specific
|
||||
link connection.<br>
|
||||
The first battery in the network (to which the RS485 connection is connected) has the address 1, the next battery
|
||||
then has address 2 and so on.<br>
|
||||
Device address of the Pylontech battery. Several Pylontech batteries can be connected via a Pylontech-specific
|
||||
Link connection. The permissible number can be found in the respective Pylontech documentation. <br>
|
||||
The master battery in the network (with open link port 0 or to which the RS485 connection is connected) has the
|
||||
address 1, the next battery then has address 2 and so on.
|
||||
If no device address is specified, address 1 is used.
|
||||
</li>
|
||||
<br>
|
||||
@ -1545,6 +1568,11 @@ Dieses Modul benötigt die Perl-Module:
|
||||
<li>IO::Socket::Timeout (Installation z.B. über die CPAN-Shell oder das FHEM Installer Modul) </li>
|
||||
</ul>
|
||||
|
||||
<b>Einschränkungen</b>
|
||||
<br>
|
||||
Das Modul unterstützt zur Zeit maximal 8 Batterien (Master + 7 Slaves) in einer Gruppe.
|
||||
<br><br>
|
||||
|
||||
<a id="PylonLowVoltage-define"></a>
|
||||
<b>Definition</b>
|
||||
<ul>
|
||||
@ -1559,10 +1587,10 @@ Dieses Modul benötigt die Perl-Module:
|
||||
</li>
|
||||
|
||||
<li><b>bataddress:</b><br>
|
||||
Geräteadresse der Pylontech Batterie. Es können bis zu 6 Pylontech Batterien über eine Pylontech-spezifische
|
||||
Link-Verbindung verbunden werden.<br>
|
||||
Die erste Batterie im Verbund (an der die RS485-Verbindung angeschlossen ist) hat die Adresse 1, die nächste Batterie
|
||||
hat dann die Adresse 2 und so weiter.<br>
|
||||
Geräteadresse der Pylontech Batterie. Es können mehrere Pylontech Batterien über eine Pylontech-spezifische
|
||||
Link-Verbindung verbunden werden. Die zulässige Anzahl ist der jeweiligen Pylontech Dokumentation zu entnehmen. <br>
|
||||
Die Master Batterie im Verbund (mit offenem Link Port 0 bzw. an der die RS485-Verbindung angeschlossen ist) hat die
|
||||
Adresse 1, die nächste Batterie hat dann die Adresse 2 und so weiter.
|
||||
Ist keine Geräteadresse angegeben, wird die Adresse 1 verwendet.
|
||||
</li>
|
||||
<br>
|
||||
|
Loading…
Reference in New Issue
Block a user