2
0
mirror of https://github.com/fhem/fhem-mirror.git synced 2025-03-10 09:16:53 +00:00

ch.eick: Ergänzungen zur KI_Prognose

git-svn-id: https://svn.fhem.de/fhem/trunk@28420 2b470e98-0d58-463d-a4d8-8e2adae1ed80
This commit is contained in:
ch.eick 2024-01-25 13:41:41 +00:00
parent 494e536b78
commit 444664e709
6 changed files with 1790 additions and 0 deletions

View File

@ -0,0 +1,268 @@
use strict;
use warnings;
use UConv; # used for wunderground conversion
use Blocking; # for sendmail
sub
MyUtils_Initialize($$)
{
my ($hash) = @_;
}
# Enter your functions below _this_ line.
###################################################
############################################################################################################
######## DbRep readings separieren und erstellen
############################################################################################################
sub splitReading {
my ($name,$reading,$value) = @_;
my $hash = $defs{$name};
if($reading =~ /^.*SqlResultRow_.*$/ and
$value =~ /^(\d+)-(\d+)-(\d+) (\d+):(\d+):(\d+)\|(.*)\|(.*)/ ) {
my $TIMESTAMP = "$1-$2-$3 $4:$5:$6";
my $READING = "$7";
my $VALUE = "$8";
setReadingsVal($hash,$READING,$VALUE,$TIMESTAMP);
}
return;
}
###########################################################
## Kostal Plenticore Autentifizierung PV_Anlage_1
###########################################################
use Encode qw(decode encode);
use PBKDF2::Tiny qw/derive verify/;
use Digest::SHA qw(sha256 hmac_sha256);
use Crypt::URandom qw( urandom );
use Crypt::AuthEnc::GCM;
######################################################
# {KeyValue("read|store","PW_PV_Anlage_1_API_user","<passwort>")}
######################################################
sub KeyValue {
my ($step, $index, $value) = @_;
my $key = getUniqueId().$index;
my $e_value = "";
my $error;
if (eval "use Digest::MD5;1") {
$key = Digest::MD5::md5_hex(unpack "H*", $key);
$key .= Digest::MD5::md5_hex($key);
}
if ($step eq "read") {
($error, $value) = getKeyValue($index);
if ( defined($error) ) {
Log3 $index,3, "$index, can't read key from FhemUtils/uniqueID: $error";
return undef;
}
if ( defined($value) ) {
my $dec_value = '';
for my $char (map { pack('C', hex($_)) } ($value =~ /(..)/g)) {
my $decode = chop($key);
$dec_value .= chr(ord($char)^ord($decode));
$key = $decode.$key;
}
return $dec_value;
}
else {
Log3 $index,3,"$index, no key found in FhemUtils/uniqueID";
return undef;
}
}
if ($step eq "store") {
for my $char (split //, $value) {
my $encode = chop($key);
$e_value .= sprintf("%.2x",ord($char)^ord($encode));
$key = $encode.$key;
}
$error = setKeyValue($index, $e_value);
return "error while saving key : $error" if(defined($error));
return "Key successfully saved in FhemUtils/uniqueID Key $index";
}
};
###########################################################
# {plenticore_auth("WR_1_API","[user|master]","auth_randomString64","auth_nonce","auth_salt","auth_rounds","auth_token","auth_transactionId")}
# {plenticore_auth("start|finish|session","user","WR_1_API","TESMUWZnwkJZbnpF","TE2MUWZnwkJZbnpFQ5ulCfolNNdAD0vT","DbAC0R85jwF0rh+r","29000","1376720346bea40cdf770a8f84b5975cfeb20c5e6ac6d89b7862df3ca9695e43","acafc66c0e1975293d35512a1e4bcceea55840b3109a703514e75b5ebce9b7c5")}
###########################################################
sub plenticore_auth {
my ($step, $user, $logdevice, $randomString, $nonce, $salt, $rounds, $transactionId, $token) = @_;
my $verbose = AttrVal($logdevice,"verbose",0) ;
my $PASSWD = KeyValue("read","PW_".$logdevice."_".$user);
if ($verbose >= 3) {
Log3 $logdevice,3,"====Start plenticore_auth==============================";
Log3 $logdevice,3,"auth_step : ".$step;
Log3 $logdevice,3,"auth_user : ".$user;
Log3 $logdevice,3,"auth_device : ".$logdevice;
Log3 $logdevice,3,"auth_KeyValue read: PW_".$logdevice."_".$user;
};
if($step eq "start")
{
my @chars = ('0'..'9', 'A'..'Z', 'a'..'z');
my $len = 12;
my $string;
if ($verbose >= 3) {
Log3 $logdevice,3,"====End arguments======================================";
};
while($len--){ $string .= $chars[rand @chars] };
$string = encode("UTF-8", $string);
$string = decode("UTF-8", $string);
my $u = encode_base64($string);
$u =~ s/\n$//g;
my $message = '{"nonce": "'.$u.'","username": "'.$user.'"}';
if ($verbose >= 3) {
Log3 $logdevice,3,"auth_nonce : ".$u;
Log3 $logdevice,3,"auth_return : ".$message;
Log3 $logdevice,3,"====End output=========================================";
};
CommandSetReading(undef, $logdevice." auth_randomString64 ".$u) ;
return $message;
}
######### This code is identical for finish and session #################
my $bitSalt = decode_base64($salt);
my $r = derive( 'SHA-256', $PASSWD, $bitSalt, $rounds );
my $ck = encode('UTF-8', "Client Key");
my $s = hmac_sha256($ck, $r);
my $underscore = sha256($s);
my $d = "n=".$user.",r=".$randomString.",r=".$nonce.",s=".$salt.",i=".$rounds.",c=biws,r=".$nonce;
if ($verbose >= 3) {
Log3 $logdevice,3,"auth_randomString : ".$randomString;
Log3 $logdevice,3,"auth_nonce : ".$nonce;
Log3 $logdevice,3,"auth_salt : ".$salt;
Log3 $logdevice,3,"auth_rounds : ".$rounds;
Log3 $logdevice,3,"auth_transactionId: ".$transactionId;
};
if($step eq "finish")
{
Log3 $logdevice,3,"====End arguments======================================";
my $sk = encode('UTF-8', "Server Key");
my $c = hmac_sha256($sk, $r);
my $pd = encode('UTF-8', $d);
my $p = hmac_sha256($pd, $c);
my $gd = encode('UTF-8', $d);
my $g = hmac_sha256($gd, $underscore);
my $f = "";
my $g1 = "";
my $s1 = "";
my $f1 = "";
my $j = 0;
for($j=0; $j<length($g); $j++) {
$g1 = substr($g,$j,1);
$s1 = substr($s,$j,1);
$f1 = $s1 ^ $g1 ;
$f = $f.$f1;
}
my $pe = encode_base64($f);
$pe =~ s/\n$//g; # Korrektur: \n am Ende des Strings entfernen, Ursache unbekannt
my $proof = decode('UTF-8', $pe);
my $message = '{"transactionId": "'.$transactionId.'", "proof": "'.$proof.'"}';
if ($verbose >= 3) {
Log3 $logdevice,3,"auth_proof : ".$proof;
Log3 $logdevice,3,"auth_return : ".$message;
Log3 $logdevice,3,"====End output=========================================";
};
return $message;
}
if($step eq "session")
{
Log3 $logdevice,3,"auth_token : ".$token;
Log3 $logdevice,3,"====End arguments======================================";
my $sk = encode('UTF-8', "Session Key");
my $dd = encode('UTF-8', $d);
my $protocol_key = hmac_sha256($sk, $dd, $s, $underscore);
## Test only my $t = "7244ba6f73c8cdc47b232e1311451939";
my $t = $token;
$t =~ s/([a-fA-F0-9][a-fA-F0-9])/chr(hex($1))/eg;
my $e2 = Crypt::AuthEnc::GCM->new("AES", $protocol_key, $t);
my $tt = encode('UTF-8', $token);
if($user eq "master")
{
$PASSWD = KeyValue("read","PW_".$logdevice."_".$user."_Service"); ## Das ist der Service Key
$tt = encode('UTF-8', $token.":".$PASSWD);
if ($verbose >= 3) {
Log3 $logdevice,3,"using master : PW_".$logdevice."_".$user."_Service";
}
}
my $e2ct = $e2->encrypt_add($tt);
my $authtag = $e2->encrypt_done();
$tt = encode_base64($t);
$tt =~ s/\n$//g; # Korrektur: \n am Ende des Strings entfernen, Ursache unbekannt
my $iv = decode('UTF-8', $tt);
my $aa = encode_base64($authtag);
$aa =~ s/\n$//g; # Korrektur: \n am Ende des Strings entfernen, Ursache unbekannt
$authtag = decode('UTF-8', $aa);
my $pp = encode_base64($e2ct);
$pp =~ s/\n//g; # Korrektur: \n am Ende des Strings entfernen, Ursache unbekannt
my $payload = decode('UTF-8', $pp);
my $message = '{"transactionId": "'.$transactionId.'", "iv": "'.$iv.'", "tag": "'.$authtag.'", "payload": "'.$payload.'"}';
if ($verbose >= 3) {
Log3 $logdevice,3,"auth_iv : ".$iv;
Log3 $logdevice,3,"auth_authtag : ".$authtag;
Log3 $logdevice,3,"auth_payload : ".$payload;
Log3 $logdevice,3,"auth_return : ".$message;
Log3 $logdevice,3,"====End output=========================================";
};
return $message;
}
};
#### Log-abriss vermeiden
sub
addLog($$$) {
my ($logdb, $logdevice, $reading) = @_; # device and reading to be used
my $logentry = ReadingsVal($logdevice,$reading,"invalid reading");
my $timestamp = strftime "%Y-%m-%d %H:%M:%S", localtime;
# if ($reading =~ m,state,i) {
if ($reading eq 'state') {
fhem "set ".$logdb." addCacheLine ".$timestamp."|".$logdevice."|addlog|".$logentry."|".$reading."|".$logentry."|";
} else {
fhem "set ".$logdb." addCacheLine ".$timestamp."|".$logdevice."|addlog|".$reading.": ".$logentry."|".$reading."|".$logentry."|";
}
}
1;

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,375 @@
#!/usr/bin/python3
# coding: utf-8
# Version die eine Vorhersage auf Basis der Messwerte - Analyseversion
# Analyse via Random Forest Regressor
import fhem
import json
# Einlesen der Übergabeparameter
import sys
DbLog = sys.argv[1]
web = sys.argv[2]
webport = 8083
DbRep = sys.argv[3]
WRname = sys.argv[4]
WRread = sys.argv[5]
try:
with open('/opt/fhem/python/pwd_fhem.json', 'r') as f:
credentials=json.load(f)
fhem_user = credentials["username"]
fhem_pass = credentials["password"]
fh = fhem.Fhem(web, protocol="http", port=webport, username=fhem_user, password=fhem_pass)
print("PV_KI_Prognose running - start")
fh.send_cmd("setreading "+DbRep+" PV_KI_Prognose running start")
except Exception as e:
print('Something went wrong: {}'.format(e))
try:
with open('/opt/fhem/python/pwd_sql.json', 'r') as f:
credentials=json.load(f)
except Exception as e:
print('Something went wrong: {}'.format(e))
verbose = fh.get_device_attribute(DbRep, "verbose")
if (verbose >= 4):
print("PV_KI_Prognose running - start")
print("PV_KI_Prognose DbLog ",DbLog,"/fhem")
print("PV_KI_Prognose Fhem ",web,":",webport)
Inverter_Max_Power = fh.get_device_reading("WR_1_Speicher_1_ExternControl", "SpeicherMidday_Inverter_Max_Power")
# Inverter_Max_Power = fh.get_device_reading(WRname, "SpeicherMidday_Inverter_Max_Power")
if (verbose >= 4):
print("Inverter_Max_Power {}".format(Inverter_Max_Power["Value"]))
import pandas as pd
import numpy as np
from sqlalchemy import create_engine
import pymysql
# betrifft beide relevanten Tabellen
db_connection_str = 'mysql+pymysql://'+credentials["username"]+':'+credentials["password"]+'@'+DbLog+'/fhem'
db_connection = create_engine(db_connection_str)
if (verbose >= 3):
print("PV_KI_Prognose running - connected to "+DbLog)
fh.send_cmd("setreading "+DbRep+" PV_KI_Prognose running connected to "+DbLog)
import datetime
from datetime import date, timedelta
today = datetime.datetime.now()
de = today.strftime("%Y-%m-%d 00:00:00")
# print(de)
# alle Wetterdaten ohne den start Tag der Prognose
dflern = pd.read_sql('SELECT * FROM dwdfull WHERE TIMESTAMP < '+"'"+de+"'", con=db_connection)
dfask = pd.read_sql('SELECT * FROM dwdfull WHERE TIMESTAMP >= '+"'"+de+"'", con=db_connection)
dfhour_start = pd.read_sql('SELECT min(hour(TIMESTAMP)) AS VALUE FROM dwdfull WHERE date(TIMESTAMP) = '+"'"+today.strftime("%Y-%m-%d")+"'", con=db_connection)
dfhour_stop = pd.read_sql('SELECT max(hour(TIMESTAMP)) AS VALUE FROM dwdfull WHERE date(TIMESTAMP) = '+"'"+today.strftime("%Y-%m-%d")+"'", con=db_connection)
dfhours = dfhour_stop['VALUE'].values[0] - dfhour_start['VALUE'].values[0] +1
if (verbose >= 3):
print("PV_KI_Prognose running - dwdfull read from DbLog "+DbLog)
fh.send_cmd("setreading "+DbRep+" PV_KI_Prognose running dwdfull read from DbLog "+DbLog)
# Rad1h = Globale Einstrahlung
# TTT = Temperature 2m above surface [°C]
# Neff = Effektive Wolkendecke
# R101 = Niederschlagswahrscheinlichkeit> 0,1 mm während der letzten Stunde
# SunD1 = Sonnenscheindauer während der letzten Stunde
# VV = Sichtweite
# N = Gesamte Wolkendecke
# DD = Windrichtung
# RRS1c = Schneeregen-Äquivalent während der letzten Stunde
columns = ['Rad1h','Neff','R101','TTT','DD','SunAz','SunAlt','SunD1','VV','N','RRS1c']
# jetzt gehen wir die Analyse an
from sklearn.ensemble import RandomForestRegressor
if (verbose >= 3):
print("PV_KI_Prognose running - RandomForestRegressor loading")
fh.send_cmd("setreading "+DbRep+" PV_KI_Prognose running RandomForestRegressor loading")
clf = RandomForestRegressor(n_estimators = 4000, bootstrap=True, random_state = 42)
if (verbose >= 3):
print("PV_KI_Prognose running - RandomForestRegressor loaded")
fh.send_cmd("setreading "+DbRep+" PV_KI_Prognose running RandomForestRegressor loaded")
# train the model
df = dflern[:]
if (verbose >= 3):
print("PV_KI_Prognose running - RandomForestRegressor trained")
fh.send_cmd("setreading "+DbRep+" PV_KI_Prognose running RandomForestRegressor trained")
# bring das gelernte in Bezug zum yield
clf.fit(df[columns], df['yield'])
if (verbose >= 3):
print("PV_KI_Prognose running - RandomForestRegressor fitted with yield")
fh.send_cmd("setreading "+DbRep+" PV_KI_Prognose running RandomForestRegressor fitted with yield")
if (verbose >= 4):
print("PV_KI_Prognose running - RandomForestRegressor read statistics")
# Auslesen und Anzeigen von Statistiken
# Get numerical feature importances
importances = list(clf.feature_importances_)
# List of tuples with variable and importance
feature_importances = [(feature, round(importance, 2)) for feature, importance in zip(columns, importances)]
# Sort the feature importances by most important first
feature_importances = sorted(feature_importances, key = lambda x: x[1], reverse = True)
# Print out the feature and importances
[print('Variable: {:20} Importance: {}'.format(*pair)) for pair in feature_importances]
# Immer einen Forecast für heute und morgen erstellen
start_date = datetime.datetime.now()
delta = timedelta(days=1)
end_date = start_date + delta
Prognose_faktor = 1 # Falls die Prognose generell daneben liegt kann der Faktor verwendet werden
loop_hour = 0
loop_date = start_date
loop_count = 0
while loop_date <= end_date:
# Daten Tagesmaximum
middayhigh = 0 # Ein Merker, ob das Tagesmaximum überschritten wird
middayhigh_start = "00:00"
middayhigh_stop = "00:00"
middayhigh_tmp = 0
middayhigh_start_tmp = 0
middayhigh_stop_tmp = 0
# Pro Prognosetag die Tages Zähler zurück setzen
Prognose_max = 0
Prognose_pre = 0
Prognose_4h = 0
Prognose_rest = 0
Prognose_morning = 0
Prognose_afternoon = 0
Prognose_day = 0
# Löschen der bisherigen Prognose von diesem
sql = "DELETE FROM history WHERE DEVICE = '"+WRname+"' AND TIMESTAMP >= '"+str(loop_date.strftime("%Y-%m-%d"))+" 00:00:00' AND READING = '"+WRread+str(loop_count)+"' ;"
db_connection.execute(str(sql))
if (verbose >= 3):
print("PV_KI_Prognose running - old forecast deleted")
fh.send_cmd("setreading "+DbRep+" PV_KI_Prognose running old forecast deleted")
New_year = str(loop_date.year)
New_month = str(loop_date.month)
New_day = str(loop_date.day)
New_hour = loop_date.hour
if (verbose >= 4):
print("--------------------------------------------")
print("Forecast fc%d %s" % (loop_count,loop_date.strftime("%Y-%m-%d")))
fcolumns = columns[:]
fcolumns.insert(0, 'TIMESTAMP')
fcolumns.append('yield')
# hole die Werte für den Tag, der bearbeitet wird
query = 'year == "'+New_year+'" and month == "'+New_month+'" and day == "'+New_day+'"'
dfq = dfask.query(query)[fcolumns].reset_index()
# erstelle die Prognose für den Tag
predict = clf.predict(dfq[columns])
# bearbeite jede einzelne Stunde der Prognose
Prognose_pre = 0
if (verbose >= 3):
print("PV_KI_Prognose running - start forecast")
fh.send_cmd("setreading "+DbRep+" PV_KI_Prognose running start forecast")
for loop_hour in range(dfhours):
parms = dfq.iloc[loop_hour].values
list = parms.reshape(1, -1)
date = loop_date.strftime("%Y-%m-%d")
# Hier wird die Prognose noch etwas angehoben, da bisher zu niedrige Werte prognostiziert werden.
# Das kann sich mit mehr Vergleichsdaten noch ändern
#
# Zusätzlich wird noch interpoliert, wodurch die Summen korrekter erscheinen
Prognose = int(round((Prognose_pre + predict[loop_hour]*Prognose_faktor)/2))
Prognose_pre = int(round(predict[loop_hour]*Prognose_faktor))
# Zu kleine Werte werden verworfen
if (Prognose < 20):
if (verbose >= 4):
print("Forecast value to smale")
Prognose = 0
# Zu große Werte werden limitiert
# Achtung, die yield Prognose Werte sind Angaben zum Ende der Stunde
if (Prognose > 0):
timestamp = date+" %02d:00:00" % (dfhour_start['VALUE'].values[0]+loop_hour)
Limit = int(round(dfask.loc[dfask['TIMESTAMP'] == timestamp].yield_max.values[0],0))
if (verbose >= 4):
# Hier wird beim Anzeigen der Wert um eine Stunde vorher angezeigt
print(dfhour_start['VALUE'].values[0]+loop_hour-1,Prognose,Limit)
if (Prognose > Limit):
if (verbose >= 4):
print("Forecast value to high : " + str(Prognose)+" > " + str(Limit))
Prognose = Limit
## hier beginnt die Ermittung für das Mittagshoch
if ( middayhigh == 0 and Prognose > Inverter_Max_Power["Value"] ):
middayhigh = 1
# der Start wird auf eine Stunde vorher vorverlegt
middayhigh_start_tmp = loop_hour-1
## einige Durchläufe später endet hier das Mittagshoch
if ( middayhigh == 1 and Prognose < Inverter_Max_Power["Value"] and middayhigh_stop_tmp == 0 ):
middayhigh_stop_tmp = loop_hour
## prüfen, ob es einen kurzen Leistungseinbruch gegeben hat, der soll übersprungen werden
if ( middayhigh == 1 and Prognose > Inverter_Max_Power["Value"] and middayhigh_stop != "00:00" ):
# da war ein kurzer Einbruch, es sollte noch länger sein.
middayhigh_stop_tmp = 0
## hier ist dann das richtige Ende vom Mittagshoch
if ( middayhigh == 1
and middayhigh_stop_tmp != 0
and middayhigh_stop_tmp == loop_hour):
## Wie lang ist das gefundene Mittagshoch
middayhigh_tmp = middayhigh_stop_tmp - middayhigh_start_tmp
if ( middayhigh_tmp > 4 ): # das Middayhigh wird zu lang
if (verbose >= 4): # die bisherigen Zeiten ausgeben
print("Middayhigh to long-------------------")
print("Middayhigh_start %02d:00" % (dfhour_start['VALUE'].values[0]+middayhigh_start_tmp))
print("Middayhigh_stop %02d:00" % (dfhour_start['VALUE'].values[0]+middayhigh_stop_tmp))
print("--------------------------------------------")
## jetzt wird die Zeit vom Mittagshoch verkürzt
## beim Start etwas mehr kürzen, als zum Ende hin
middayhigh_start_tmp = middayhigh_start_tmp + round(middayhigh_tmp/3-0.2) # es wird um ganze Stunden verkürzt
middayhigh_stop_tmp = middayhigh_stop_tmp - round(middayhigh_tmp/6-0.2)
if (verbose >= 4): # melde die Verkürzung
print("Middayhigh cut about %d h" % (round(middayhigh_tmp/3-0.2)+round(middayhigh_tmp/6-0.2)) )
## Die neuen Mittagshochzeiten formatieren
middayhigh_start = "%02d:00" % (dfhour_start['VALUE'].values[0]+middayhigh_start_tmp)
middayhigh_stop = "%02d:00" % (dfhour_start['VALUE'].values[0]+middayhigh_stop_tmp)
## End if (middayhigh == 1...
### Bildung der Prognose Summen ###
if (Prognose > Prognose_max):
Prognose_max = Prognose
Prognose_max_time = "%02d:00" % (dfhour_start['VALUE'].values[0]+loop_hour-1)
# Hier wird die Summe der nächsten 4 h gebildet
if ( dfhour_start['VALUE'].values[0]+loop_hour > New_hour
and dfhour_start['VALUE'].values[0]+loop_hour <= New_hour+3):
Prognose_4h += Prognose
# Hier wird die Summe für den Resttag gebildet
if (dfhour_start['VALUE'].values[0]+loop_hour > New_hour):
Prognose_rest += Prognose
# Hier wird die Summe für den Vormittag gebildet
if (dfhour_start['VALUE'].values[0]+loop_hour < 13):
Prognose_morning += Prognose
# Hier wird die Summe für den Nachmittag gebildet
if (dfhour_start['VALUE'].values[0]+loop_hour >= 13):
Prognose_afternoon += Prognose
# Summe für den ganzen Tag
Prognose_day += Prognose
######################################################################
# Die Prognose anzeigen und in die dwdfull Tabelle eintragen
if (loop_hour-1 >= 0):
# Achtung, der Wert wird um eine Stunde früher in die Datenbank eingetragen
timestamp = date+" "+"%02d:00:00" % (dfhour_start['VALUE'].values[0]+loop_hour-1)
sql = "UPDATE dwdfull SET forecast ="+str(Prognose)+" WHERE TIMESTAMP = '"+timestamp+"' AND hour ="+str(dfhour_start['VALUE'].values[0]+loop_hour-1)+";"
db_connection.execute(str(sql))
sql = "INSERT INTO history (TIMESTAMP, DEVICE, TYPE ,READING ,VALUE) VALUES('"+timestamp+"','"+WRname+"','addlog','"+WRread+str(loop_count)+"','"+str(Prognose)+"') ;"
db_connection.execute(str(sql))
# Die Prognose Werte ins FHEM schreiben
reading = WRread+str(loop_count)+"_%02d" % (dfhour_start['VALUE'].values[0]+loop_hour-1)
fh.send_cmd("setreading "+WRname+" "+reading+" "+str(Prognose))
if (verbose >= 3):
print("%s %02d %d" % (reading,dfhour_start['VALUE'].values[0]+loop_hour-1,Prognose))
# Zum Ende der Prognose alle Werte in die readings schreiben
if (loop_hour == dfhours-1):
if (loop_date.day == start_date.day):
# Für den aktuellen Tag diese Werte schreiben
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_max "+str(Prognose_max))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_max_time "+str(Prognose_max_time))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_middayhigh "+str(middayhigh))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_middayhigh_start "+str(middayhigh_start))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_middayhigh_stop "+str(middayhigh_stop))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_4h "+str(Prognose_4h))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_rest "+str(Prognose_rest))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_morning "+str(Prognose_morning))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_afternoon "+str(Prognose_afternoon))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_day "+str(Prognose_day))
if (loop_date.day != start_date.day):
# für weiter Prognosen sind nur diese Werte relevant
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_max "+str(Prognose_max))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_max_time "+str(Prognose_max_time))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_middayhigh "+str(middayhigh))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_middayhigh_start "+str(middayhigh_start))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_middayhigh_stop "+str(middayhigh_stop))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_morning "+str(Prognose_morning))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_afternoon "+str(Prognose_afternoon))
fh.send_cmd("setreading "+WRname+" "+WRread+str(loop_count)+"_day "+str(Prognose_day))
if (verbose >= 3):
# für das Logging noch etwas formatieren
print("--------------------------------------------")
print("max off/at",Prognose_max,Prognose_max_time)
print("Middayhigh_start",middayhigh_start)
print("Middayhigh_stop ",middayhigh_stop)
print("4h ",Prognose_4h)
print("rest ",Prognose_rest)
print("morning ",Prognose_morning)
print("afternoon ",Prognose_afternoon)
print("day ",Prognose_day)
print("--------------------------------------------")
if (verbose >= 3):
print("PV_KI_Prognose running - forecast written to FHEM")
fh.send_cmd("setreading "+DbRep+" PV_KI_Prognose running forecast written")
loop_date += delta
loop_count += 1
if (verbose >= 3):
print("PV_KI_Prognose done")
# Zum Schluss noch einen Trigger ins FHEM schreiben
fh.send_cmd("setreading "+DbRep+" PV_KI_Prognose done")

View File

@ -0,0 +1,16 @@
defmod LogDBRep_PV_KI_Prognose DbRep LogDB
attr LogDBRep_PV_KI_Prognose DbLogExclude .*
attr LogDBRep_PV_KI_Prognose comment Version 2023.02.23 12:00\
\
Hier wird die Vorbereitung für die KI PV-Leistungsprognose durchgeführt\
\
sqlCmd call dwd_load(curdate(),'none');;\
[none|show] zum Anzeigen des Ergebnisses\
\
executeAfterProc:\
<absoluter Skript Name> <DbLog IP-Adresse> <FHEM IP-Adresse> <DbRep Name> <Wechselricher Name> <Prefix Reading Name>
attr LogDBRep_PV_KI_Prognose executeAfterProc "/opt/fhem/python/bin/PV_KI_Prognose.py 192.168.178.40 192.168.178.40 LogDBRep_PV_KI_Prognose WR_ctl Yield_fc"
attr LogDBRep_PV_KI_Prognose room System
attr LogDBRep_PV_KI_Prognose verbose 3
setstate LogDBRep_PV_KI_Prognose 2024-01-25 14:07:24 sqlCmd call dwd_load(curdate(),'none');;

View File

@ -0,0 +1,4 @@
{
"username": "< Benutzername zum FHEM >",
"password": "< Passwort zum FHEM >"
}

View File

@ -0,0 +1,4 @@
{
"username": "< fhemuser zum MySQL >",
"password": "< Passwort zum MySQL >"
}